Maximal function on generalized Lebesgue spaces L^p(⋅)
نویسندگان
چکیده
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولGeneralized Lebesgue Spaces and Application to Statistics
Statistics requires consideration of the “ideal estimates” defined through the posterior mean of fractional powers of finite measures. In this paper we study L1= , the linear space spanned by th power of finite measures, 2 (0; 1). It is shown that L1= generalizes the Lebesgue function space L1= ( ), and shares most of its important properties: It is a uniformly convex (hence reflexive) Banach s...
متن کاملMaximal Regularity for Flexible Structural Systems in Lebesgue Spaces
We study abstract equations of the form λu′′′ t u′′ t c2Au t c2μAu′ t f t , 0 < λ < μ which is motivated by the study of vibrations of flexible structures possessing internal material damping. We introduce the notion of α; β; γ -regularized families, which is a particular case of a; k regularized families, and characterize maximal regularity in L-spaces based on the technique of Fourier multipl...
متن کاملRadial Maximal Function Characterizations for Hardy Spaces on RD-spaces
An RD-space X is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type X having “dimension” n, there exists a p0 ∈ (n/(n+ 1), 1) such that for certain classes of distributions, the L(X ) quasi-norms of their radial maximal functions and grand maximal functions are ...
متن کاملMaximal regularity for evolution equations in weighted Lp - spaces
LetX be a Banach space and let A be a closed linear operator on X. It is shown that the abstract Cauchy problem u̇(t)+ Au(t) = f (t), t > 0, u(0) = 0, enjoys maximal regularity in weighted Lp-spaces with weights ω(t) = tp(1−μ), where 1/p < μ, if and only if it has the property of maximal Lp-regularity. Moreover, it is also shown that the derivation operator D = d/dt admits anH∞-calculus in weigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2004
ISSN: 1331-4343
DOI: 10.7153/mia-07-27